Turbulent mixing with physical mass diffusion.
نویسندگان
چکیده
Simulated mixing rates of the Rayleigh-Taylor instability for miscible fluids with physical mass diffusion are shown to agree with experiment; for immiscible fluids with physical values of surface tension the numerical data lie in the center of the range of experimental values. The simulations are based on an improved front tracking algorithm to control numerical surface tension and on improved physical modeling to allow physical values of mass diffusion or surface tension. Compressibility, after correction for variable density effects, has also been shown to have a strong influence on mixing rates. In summary, we find significant dependence of the mixing rates on scale breaking phenomena. We introduce tools to analyze the bubble merger process and confirm that bubble interactions, as in a bubble merger model, drive the mixing growth rate.
منابع مشابه
On the Dependence of Soot Formation and Combustion on Swirling Combustion Furnaces: Measurement and Simulation
Soot concentration distribution is investigated both numerically and experimentally in methane-air diffusion flame. The experimental work is conducted with a cylindrical swirl stabilized combustor. Filter paper technique is used to measure soot volume fraction inside the combustor. The numerical simulation is based on the solution of the fully-coupled conservation equations for swirling turbule...
متن کاملLagrangian particles with mixing. I. Simulating scalar transport
The physical similarity and mathematical equivalence of continuous diffusion and particle random walk forms one of the cornerstones of modern physics and the theory of stochastic processes. The randomly walking particles do not need to posses any properties other than location in physical space. However, particles used in many models dealing with simulating turbulent transport and turbulent com...
متن کامل3. Mixing in Rivers: Turbulent Diffusion and Dispersion
In previous chapters we considered the processes of advection and molecular diffusion and have seen some example problems with so called “turbulent diffusion” coefficients, where we use the same governing equations, but with larger diffusion (mixing) coefficients. In natural rivers, a host of processes lead to a non-uniform velocity field, which allows mixing to occur much faster than by molecu...
متن کاملThe Effect of Turbulence on Mixing in Prototype Reaction-Diffusion Systems
The effect of turbulence on mixing in prototype reaction-diffusion systems is analyzed here in the special situation where the turbulence is modeled ideally with two separated scales consisting of a large-scale mean flow plus a small-scale spatiotemporal periodic flow. In the limit of fast reaction and slow diffusion, it is rigorously proved that the turbulence does not contribute to the locati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 73 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2006